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Abstract—The Internet of Things (IoT) is a trend of connecting
physical objects to the Internet. IoT applications running together
with interconnected objects enable the vision of gathering data
and based on that act in physical environments with minimal
human intervention. Maintaining such IoT applications needs
to incorporate different software and hardware components to
build up the network of things that delivers the data of sensors
and controls actuators. However, the effort of installation, con-
figuration and management of a growing number of IoT devices
increases the complexity of integrating such heterogeneous hard-
and software. Automating the configuration of IoT devices, i.e.,
reducing the effort of configuring the devices in the target
vicinity, reduces cost, complexity and the occurrence of errors.
We propose the usage of automatically generated Scale-Out
Plans on the basis of the OASIS standard TOSCA. The overall
approach is based on the ability to mark regions inside TOSCA
application models, that must be scaled out when new devices are
registered for the overall application. From this marked model
we generate Scale-Out Plans that are able to create instances
of software components enabling the automated configuration of
IoT devices. We prove the technical feasibility of our approach
by a prototypical implementation based on our previous work.

Index Terms—Internet of Things, Middleware, Systems mod-
eling, Large-scale systems, Scalability, System integration

I. INTRODUCTION

The trend of connecting physical objects with the Internet
gave birth to the term Internet of Things (IoT). IoT envisions
applications running with interconnected objects working to-
gether to gather data and act in environments by controlling
different actuators to enable new functionality with minimal
human intervention [1]. This trend enables the development
of applications that use data globally. During the maintenance
of such IoT applications numerous software and hardware
components are in place that together build up the network of
things that is able to deliver data captured by different sensors
and act in physical environments with the help of actuators.

However, with the growing amount of IoT devices the effort
to install, configure and manage, thus binding a device to
an application, is increasing in complexity, as applications
using these devices must be able to integrate not just het-
erogeneous hardware and software components but as well
be able to scale accordingly, e.g, by using Cloud Computing
resources [2]. A single application that measures the temper-
ature of a neighborhood must be able to manage dozens of
devices of which each has to manage itself multiple sensors
and actuators. Automating the binding of IoT devices and

software, i.e., reducing the effort of installing and configuring
the devices in the target vicinity, reduces cost, complexity
and the occurrence of errors. We propose an approach that
is based on the OASIS standard TOSCA, by enabling to
mark so-called Scale-Out Regions by a modeler inside an
application model. From this marked application model we
generate Scale-Out Plans that are able to create instances from
the components inside the marked regions, which in turn,
enables to automatically install and configure IoT devices. By
enabling modelers to generate Scale-Out Plans, that enable
configuration and scaling of applications automatically, the
complexity of modeling the behavior of an application when
incorporating additional devices and sensors is reduced. In
overall, automating the configuration of devices reduces time
and enabling the standardized modeling of an application by
using TOSCA, allows the reuse of components which in turn
enables to incorporate heterogeneous devices. Enabling to in-
corporate commodity software and hardware such as the open-
source home automation platform, and thus IoT Middleware,
Home Assistant [3] and the IoT Device Raspberry Pi [4]
reduces cost and automating their configuration reduces it even
further. Message Brokers for publishing and subscribing to
sensor data are also an integral part of IoT applications. In IoT,
Message Brokers, such as Mosquitto [5], are employing typical
IoT protocols, such as the OASIS standard MQTT [6], which
are characterized to be suitable for devices with low bandwith,
low power, high latency and other constraining factors. Our
approach reduces the time of integrating additional IoT devices
in running applications, hence, enabling IoT applications to
scale out to additional devices.

This paper is structured as follows: In Section II, we
describe a motivating scenario of a typical IoT application,
consisting out of devices installed in different environments. In
the same section we also describe the OASIS standard TOSCA
by describing how to model the presented scenario. After-
wards, we describe our approach of solving the motivational
scenario by automating the configuration of IoT devices with
our generic method of generating Scale-Out Plans in Section
III. In Section IV we describe our validation of our approach
based on a prototypical implementation of our method within
the OpenTOSCA Ecosystem. In Section V we discuss work
related to IoT device integration, Section VI concludes the
paper and outlines possible future work.
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Fig. 1. Motivating scenario depicting a technician who installs a new device and registers it at the IoT Middleware, enabling clients to view their house data.

II. MOTIVATING SCENARIO AND TOSCA

In this section we describe our motivating scenario of a
company’s business model built around the IoT management
of property of different clients (see in Figure 1). A new
offering of the company is to monitor different properties
of the managed house such as temperature, CO2 emissions
and luminance (see charts in Figure 1). The data is gathered
by the companies IoT middleware to be further processed to
offer different additional services such as informing of energy
consumption and to guide a more efficient use. The monitoring
shall be done with devices that are able to control different
types of sensors at the site (see house in Figure 1) and send it
to a service of the company managing it (see IoT Middleware
in Figure 1). As the company intends to grow, the system must
be able to incorporate additional devices at runtime of the
application. The company intends to incorporate new devices
and sensors with three steps: (i) install the devices and sensors
by a technician in the intended environment (see step 1 in
Figure 1), (ii) register the device with its attached sensors by
configuring it to send the measured data to the companies’ IoT
Middleware (see step 2 in Figure 1) and afterwards, (iii) the
newly registered device is detected by processing the received
data (see step 3 in Figure 1). One issue with the incorporation
of devices is the installation of them itself, which entails
setting up a device at the new environment that has to be
monitored. After the installation process, the configuration
to read the sensors and sending their measured data must
be taking place. This requires the installation of software
drivers that can read values from each attached sensor or issue
commands to actuators. Both, can differ in their type, such
as temperature or light sensors, and can be made by a wide
range of manufacturers. Additionally, measured data must be
send by software adapters to the target IoT Middleware with
its used protocol and expected data format. In summary the
integration of devices is a complex process, as companies cope
with heterogeneous devices, sensors and middlware each with
own drivers, adapters, protocols and data formats.

To model the described scenario we introduce the OA-
SIS standard Topology and Orchestration Specification for
Cloud Applications” (TOSCA) [7], [8]. TOSCA is a stan-
dard enabling the modeling of composite cloud applications
in so-called Topology Templates (see Figure 2). Topologies

specify components as Node Templates while the relations
between them are specified as Relationship Templates. Each
of them have an associated Node- and Relationship Type
defining configuration parameters that can be set on their
templates, e.g., a virtual machine Node Type may expose
configuration parameters to set user names and passwords,
which are specified on the Node Templates of a Node Type.
The order of provisioning the modeled Node Templates is
based on the used Relationship Types. In our scenario, the
“hostedOn” Relationship Type indicates that a Node Template
must be installed on another. Another type of relation is the
dependency between components called “dependsOn”, which
allows, e.g, to model the need for a Python Application to have
a Python Runtime available. The “connectTo” relationship in
our scenario enables the modeling of connections between two
components, e.g., the sending of sensor data from a Python
Application to a Topic. The implementation of Node Types is
based on so-called Node Type Implementations that combine
Implementation- (IAs) and Deployment Artifacts (DAs). IAs
implement the management operations of a Node Type, e.g., a
virtual machine Node Type exposes operations to upload files,
which can be implemented by Web Services. DAs specify
the artifacts that make up the business functionality of the
components, e.g., a virtual machine image for the Ubuntu
14.04 Node Template. To specify management behavior of ap-
plications, TOSCA enables the use of Management Plans that
can instantiate, alter and terminate topologies. To provision,
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Fig. 2. Example TOSCA Topology Template of our motivating scenario.
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Fig. 3. Overview of our approach for registering, configuring and integrating IoT devices into running applications, by executing a generated Scale-Out Plan.

e.g., a virtual machine on an OpenStack cloud, a plan, in this
case a Provisioning Plan, would invoke the exposed operations
of an interface that is specified on an OpenStack Node Type
(see “Start VM” subprocess in Figure 2). The plans may use
configuration parameters of Node- and Relationship Templates
as the input of management operations to create instances with
the specified configurations. To create an instance, e.g., of the
Home Assistant Node Template and its infrastructure (Python
3.4 and Ubuntu 14.04 VM) a plan would first start a virtual
machine by invoking the “Start VM” operation. Afterwards, it
would use operations of the Ubuntu Node Type, e.g., “Transfer
File” and “Run Script” to upload the necessary binaries (DAs)
and execute the installation scripts (IAs) on the started virtual
machine. To model our scenario, a “Home Assistant” Node
Template is of the Node Type “Python Application” that
depends on a “Python 3.4” environment (see in Figure 2). To
receive messages from the devices we specify an infrastructure
to receive sensor data with the MQTT Broker Mosquitto,
which enables creating Topics to either publish and subscribe
data to (see Topic, Mosquitto 3.1, Ubuntu 14.04 in Figure 2).
Both are hosted on an Ubuntu virtual machine which is started
on an OpenStack Cloud at provisioning time (see Ubuntu
14.04 and OpenStack Liberty 12 in Figure 2). The sending
of sensor data is achieved by modeling the device with its
operating system (see Raspberry Pi and Raspbian Jessie in
Figure 2), the needed software for reading and sending sensor
values (see Python 3.4 and Python Application in Figure 2),
and the sensor itself (see Temperature Sensor Node Template
in Figure 2).

III. AUTOMATED SCALE-OUT PLAN GENERATION

In the following we give an overview of our approach of
solving the scenario by using Scale-Out Plans to integrate IoT
devices into running IoT applications. Afterwards, we define
so-called Scale-Out Regions that define the components which
must be scaled out in Subsection III-A. To give insight, we
present previous work in Subsection III-B, on how to generate
Provisioning Plans able to instantiate a whole TOSCA applica-
tion. Finally, we describe our method for generating Scale-Out
Plans from specified Scale-Out Regions in Subsection III-C.

To automate the presented scenario of a company managing
houses by using IoT devices, we identified the following
steps which have to be considered: At first, a technician must
(i) setup the device and the needed sensors at the clients’
house, afterwards, the device and its sensors are (ii) configured
by installing software components onto the devices to read
sensor data and send it to companies’ application. After the
installation and configuration by the technician is finished,
the sent sensor data is then (iii) processed in the companies
application to, e.g., enable views of the measured data (see
Section II). To ease the installation of software components
and their configuration on IoT devices of the scenario, we
propose the use of Scale-Out Plans that are able to provision
and configure software components on running component
instances with the following approach (see Figure 3): A
technician installs the IoT device and its sensors at the target
house, but instead of installing and configuring the software
components himself, he registers the devices and sensors
as TOSCA Node- and Relationship Template instances at a



A B

C D

E F

a

b c

d e

C

D B

A

a+ +

BA a

b c

E F

d e

C D

C

D B

A

a+ +

…

…
…

…

+ +

++

+

CCC.1 C.1 C.1

Topology	Template	with	
Scale-Out	Region	and	
Selection	Strategies

Scale-Out	Order	Graph Scale-Out	Plan	Skeleton Executable	Scale-Out	Plan

Fig. 4. Three step method for generating Scale-Out Plans for TOSCA Topology Templates marked with Scale-Out regions and Selection Strategies.

TOSCA Runtime Environment that manages the companies’
deployed application (see 1 in Figure 3). Afterwards, the
technician requests the execution of a generated Scale-Out
Plan that is able to install and configure the needed software on
the registered device and sensor instances (see 2 in Figure 3).
This is achieved by instantiating the Node- and Relationship
Templates that read sensor data and send it to the companies’
IoT middleware used by their clients (see 3 in Figure 3). To
enable this approach, we propose the use of Scale-Out Regions
to mark components that have to be scaled out by a Scale-Out
Plan. We then apply a generic method that is able to generate
Scale-Out Plans from these Scale-Out Regions, enabling to
scale-out an application at runtime.

A. Scale-Out Regions and Scale-Out Plans

Scaling can be classified into techniques that can either
adapt the application in a proactive and reactive way [9] [10].
Concrete scaling methods can be categorized into horizontal
(“scale-out”) and vertical (“scale-up”) scalings, where either
the scaling is achieved by adding additional instances of a
component, hence scaling out horizontally, or increasing the
resources available to running components, hence scaling up
vertically. In our approach we focus on scaling out, i.e., hor-
izontally scaling out TOSCA applications, which we achieve
by using so-called Scale-Out Regions and Scale-Out Plans
described in the following.

a) Scale-Out Region: A Scale-Out Region is a weakly
connected subset of Node- and Relationship Templates of
a Topology Template, which shall be horizontally scaled
by creating new instances of each Node- and Relationship
Template inside an already running instance of a Topology
Template, i.e., scale out an application by installing new
instances of software components. Additionally, a Scale-Out
Region must specify the proper selection of running instances
that are not part of the components that shall be scaled out.
This is necessary as some newly created component instances
must be installed on already running ones, e.g., installing a
Python Application on a running Raspberry Pi. This is enabled
by defining Selection Strategies that define how a single
instance of a Node Template must be selected at runtime.
These strategies must be attached to the Node Templates that
are connected to the region of the components that shall be

scaled out. One class of Node Templates that have to be
annotated with a strategy are connected to the region through
outgoing infrastructure relationships, such as “hostedOn” and
“dependsOn”. In this case, the selection of Node Template
instances may specify that an instance with the lowest CPU
load (e.g. when selecting virtual machines) must be selected.
Another selection must be taking place for Node Templates
that are connected through a “connectTo” relationship to
the specified region, as the scaled out components must be
connected to an instance. In this case the selection, e.g, may be
driven by Service Selection algorithms that rank the different
Node Template instances according to their request load [11].

To describe our approach we define a digraph based
metamodel for Topology Templates and Scale-Out Regions,
whereby a Topology Template is an acyclic and possibly
disconnected digraph. In contrast, a Scale-Out Region must
be at least a weakly connected digraph to enforce selecting
proper subgraphs of the topology, disabling the possibility
of modeling a region that instantiates an application and its
virtual machine, but not the needed middleware in between,
e.g., by creating a region consisting of a Topic and Ubuntu
Node Templates, but missing the needed Mosquitto Node
Template that can host the topic. Let T be the set of all
topologies and SR be the set of all Scale-Out Regions, then
t 2 T and sr 2 SR are defined as the following tuples:

t = (V
topo

, E
topo
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sr
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sr
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In summary, Scale-Out Regions sr are weakly connected

subgraphs of Topology Templates t, which contain Node
Templates v

r
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that shall be instantiated and Node
Templates v
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according to a specified strategy. The component relations
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) or are edges that connect the modeled
region to the Node Templates for which an instance has to be
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b) Scale-Out Plan: A Scale-Out Plan creates a single

instance for each Node- and Relationship Template specified
in a Scale-Out Region and connects these to or installs
them on selected Node- and Relationship Template instances
(See on the right of Figure 5). In other words, a Scale-Out
Plan combines the provisioning of Node- and Relationship
Templates with the selection of instances at the border of a
Scale-Out Region at runtime. The provisioning part is based on
the specified templates which are part of the Scale-Out Region,
meaning that the configuration of the components intended to
scale out are equal to instances created at provisioning time
of the overall application. In contrast to this, the selection of
template instances must be configurable as different types of
templates imply different selection methods. Thus, a Scale-
Out Plan must be able to select instances according to the
specified Selection Strategies of a Scale-Out Region. Further,
this runtime selection must be achieved before provisioning
the Node- and Relationship Templates of the Scale-Out Region
itself, as instances of these must be installed and configured
on the selected instances. Additionally to the instance se-
lection based on Selection Strategies, additional Node- and
Relationship Template instances must be retrieved by a Scale-
Out Plan on which the strategically selected Node Templates
instances are hosted on. This is needed as some templates
that are provisioned in the region may need the instance data
of the component instances, such as the IP address and user
credentials of a virtual machine. In other words, a Scale-
Out Plan must retrieve the Node- and Relationship Template
instances that are part of the infrastructure of the strategically
selected instances, e.g., by following the outgoing “hostedOn”
Relationship Templates in Topology Template of strategically
selected Node Templates and according to the structure, select
the appropriate instances.

To clarify what kind of activities a Scale-Out Plan has
to execute we define a digraph based metamodel which we
call Scale-Out Order Graphs (SOG) where its nodes represent
abstract activities and the edges represent the control flow of
the overall plan. While the abstract activities define either that
a Node- and Relationship Template is instantiated or selected
from running instances, the edges represent the order of these
activities. Let SOG be the set of all Scale-Out Order Graphs,
then sog 2 SOG is defined as the following tuple:
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enforce the control
flow of the sog to select the Node- and Relationship
Template instances before any provisioning activities
can be executed. In addition, with the subset
V
selection

⇥ V
recursive

we enforce that a strategic
selection always occurs before any recursive selection of
infrastructure Node- and Relationship Template instances
is taking place. The control flow of the provisioning itself
is mapped to the edge subset V

provisioning

⇥V
provisioning

representing the order of instantiating the Node- and
Relationship Template instances of a Scale-Out Region.

In summary, a Scale-Out Plan executes different activi-
ties to instantiate Node- and Relationship Template instances
(V

provisioning

), strategically select Node Template instances
(V

selection

) and their infrastructure as instances of Node- and
Relationship Templates (V

recursive

).

B. Provisioning Plan Generation

The generation of provisioning activities v 2 V
provisioning

and the edges e 2 V
provisioning

⇥ V
provisioning

of a sog 2
SOG is based on our previous work, which is described in the
following. Breitenbücher et al. [12] present an approach to au-
tomatically generate Provisioning Plans for TOSCA Topology
Templates. The approach itself is split into three steps which
are: (i) Generation of a Provisioning Order Graph (POG)
from the given Topology Template, (ii) Transformation of the
POG into a Provisioning Plan Skeleton (PPS) and, as the last
step, (ii) complete the PPS into an executable Provisioning
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Plan by a set of Provisioning Logic Providers (PLPs). As the
first step of the approach a POG is generated by creating an
abstract Provisioning Activity for each Node- and Relationship
Template of a topology (v 2 V

provisioning

✓ V
sog

). The
control flow connections (e 2 V

provisioning

⇥ V
provisioning

)
between the abstract provisioning activities is based on the
semantics of the Relationship Types used by the Relation-
ship Templates. A “hostedOn” type enforces the provisioning
order to provision first the target Node Template of such
a relation and the source after. In contrast, a “connectTo”
Relationship Type forces the provisioning to first provision
both source and target Node Templates before a connection
between the two components can be made. After generating
a POG from the Topology Template it is transformed into a
language-dependent PPS that must be equal to the order of
the Provisioning Activities of the POG. The PPS is at the
end a language-dependent skeleton with placeholder activities
that resemble the order of the activities of the generated POG.
This PPS is completed into an executable Provisioning Plan
in the final step of the approach by so-called Provisioning
Logic Providers (PLPs) that are able to process the Node-
and Relationship Templates of the Topology Template based
on their Node- and Relationship Type respectively and add
executable Provisioning Activities to the generated PPS by
replacing the specified placeholder activities. After this step,
if all placeholders are replaced by PLPs, the original PPS is
transformed to an executable Provisioning Plan.

C. Scale-Out Plan Generation
In this subsection we describe how to generate a Scale-Out

Plan from a Scale-Out Region. We propose a 3 step method
that is shown in Figure 4. The three steps of the method
are the (a) Scale-Out Order Graph Generation, (b) Scale-
Out Plan Skeleton Transformation and (c) the Scale-Out Plan
Completion step, which in the following we describe in detail.

a) Scale-Out Order Graph Generation: As the first step
a Scale-Out Order Graph (SOG) is generated from the given
Topology Template marked with Scale-Out Regions and speci-
fied Selection Strategies (See Scale-Out Order Graph in Figure

4). A SOG represents an order of abstract activities of selecting
and provisioning Node- and Relationship Template instances,
the generation of such a SOG, we will now describe based
on our motivating scenario (See Figure 5) and an algorithm
(See Figure 6) in detail. For our scenario, we marked a
region which contains the Python Application, its Python 3.4
Runtime and the Topic the sensor data will be sent to (See on
the left in Figure 5). As these components will be installed
on running component instances a selection at the border
of the region must occur. In our scenario, we annotate the
Raspbian and Temp Sensor Node Templates with a “User
Provided Selection Activitiy” which selects an component
instance based on the input of the generated Scale-Out Plan.
This enables the technician of our scenario to reference the
installed devices and sensors in the input of the plan. To
create a Topic for the sensor data an instance of the Mosquitto
Broker must be selected, this is achieved by annotating the
Node Template with the “Workload-based Selection Strategy”,
that selects an instance based on the workload, enabling the
company to start additional brokers, thus, scale the messaging
infrastructure independent of the technicians. Integrating the
device to the processing part of our scenario is achieved with
the last annotation called “First Instance Selection Strategy”
on the Home Assistant Node Template. To connect the data to
the application, the annotated Selection Strategy only selects
the first instance of a Home Assistant Node Template, which in
our example scenario is only a single centralized middleware
for the companies’ customers, i.e., the application will always
have only a single instance of it at runtime.

The generation of a sog 2 SOG (See Definition 2 in III-A)
from a Scale-Out Region sr 2 SR (See Definition 1 in
Subsection III-A) of our scenario is achieved by executing
the algorithm in Figure 6. In the first phase of the algorithm
we reuse the Provisioning Order Graph Generation of our
previous work (See Line 2 in Figure 6 and Subsection III-B),
which generates our provisioning activities v 2 V

provisioning

of sog. The different abstract selection activities V
selection

,
V
recursive

⇢ V
sog

are added to V
sog

like the following: For
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20: end for
21: end for
22: end if
23: end for

Fig. 6. Pseudocode for generating a Scale-Out Order Graph.

each Node Template annotated with a Selection Strategy a
Strategic Selection Activity will be added (See Line 4 in
Figure 6). Afterwards, the algorithm determines all outgo-
ing paths of the Node Template that are connected through
infrastructure edges, such as a “hostedOn” or “dependsOn”
relation (See Line 5 in Figure 6). If such paths don’t exist, the
algorithm will directly connect the selection activity strat

v

to
the provisioning activity of all edges that have the strategically
selected node as the target node (See Lines 6-9 in Figure 6). If
such paths exist, the algorithm generates Recursive Selection
Activities for each Node- and Relationship Template of such
a path and additionally connects them in the same order (See
Lines 11-17 in Figure 6). In the final phase of the algorithm,
the generated paths must be connected to the Provisioning
Activities of the region. This is achieved by connecting the last
Recursive Selection Activity of a path with the Provisioning
Activities of the Relationship Templates connected to the
annotated Node Templates (See Lines 18-20 in Figure 6).

b) Scale-Out Plan Skeleton Transformation: After we
generated the SOG from the Topology Template the next step
is to transform the SOG into a language-dependent Scale-Out
Plan Skeleton (SPS) (See Scale-Out Plan Skeleton in Figure
4). This step is analogous to our previous approach, where a
language-dependent Plan Skeleton containing placeholders in
the order of the abstract graph is generated. In our previous
and the extended approach of this work, these skeletons are
generated for a target language and preserve the order of a

POG/SOG it is created from, but instead of abstract activities
the skeleton contains a placeholder of the target language,
e.g., in BPEL these placeholder activities might be <empty>
activities inside a <flow> activity that preserves the order by
adding <links> according to the SOG. Additional code, such
as, variables that will hold instance data at runtime or basic
input and output parameters can be added in this step.

c) Scale-Out Plan Skeleton Completion: The last step
completes a SPS by adding language-dependent and exe-
cutable activities with so called Instance Selection Logic
Providers (ISLP) and by reusing Provisioning Logic Providers
(PLPs) from our previous work (See Executable Scale-Out
Plan in Figure 4). For each activity in the SPS which is
used to provision a Node- or Relationship Template we use
a PLP as described by Subsection III-B, in the following we
describe the usage of ISLPs in detail. These are able to process
the Node Templates with annotated Selection Strategies to
generate executable activities for the PPS, that implement the
requested Selection Strategy. An ISLPs is therefore specified
to be able to support a set of Selection Strategies for at least a
single Node Type. An example for such an ISLP implementing
the “User-Provided Selection Strategy” (see in Figure 5) would
add activities that achieve the selection based on the input
of the Scale-Out Plan. This could be done by simply adding
an additional input parameter and activities reading the given
data from the input. A more sophisticated ISLP could create
a task inside a Workflow Management System which starts
the whole task of installing a new device by a technician, and
only continues execution if the task is finished. ISLPs can be
implemented in many ways but are restricted to select only a
single instance of all available instances. This ensures that the
generated Scale-Out Plan in overall only generates activities
that handle a single Node- or Relationship Template by either
provisioning or selecting it. The Recursive Selection Activities
inside a PPS can be handled in a generic way, by selecting an
instance of a Node- and Relationship Template based on the
Topology Template model and previously selected instances,
e.g., by reading instance data inside the plan.

In summary, we extended our previous approach by adding
additional activities to select instances at runtime. The exten-
sion is based on the specification of Scale-Out Regions with
Selection Strategies. From a Scale-Out Region we generate a
Scale-Out Order Graph that specifies the provisioning order
of the Node- and Relationship Templates in an abstract way.
In addition to provisioning, a Scale-Out Order Graph contains
abstract Strategic Selection and Recursive Selection Activi-
ties for selecting Node- and Relationship Templates that are
used to connect or install the provisioned components. After
generating a Scale-Out Order Graph we transform it into a
language-dependent Scale-Out Plan Skeleton which preserves
the order of the original graph but instead of abstract activities
replaces these with placeholders of the target language. The
skeleton is afterwards completed by a set of Provisioning
Logic Providers and Instance Selection Logic Providers that
replace the placeholders with concrete, language-dependent
activities to obtain an executable Scale-Out Plan.



1 <ServiceTemplate
2 id="HomeAssistant_ServiceTemplate">
3 <Tags>
4 <Tag name="scalingplans"
5 value="scaleout_todevice"
6 />
7 <Tag name="scaleout_todevice"
8 value="Python_3_4,PythonApp_3_4,Topic;
9 PythonHostedOnRaspOS,
10 PythonAppHostedOnRaspOS,
11 PythonAppDependsOnPython,
12 PythonAppConnectsToTopic;
13 UserProvided[Raspbian],
14 UserProvided[TempSensor],
15 WorkloadBased[Mosquitto_3_1],
16 FirstInstance[HomeAssistant]"
17 />
18 </Tags>

Fig. 7. Snippet of a TOSCA Service Template of our motivating scenario
with its marked regions for scaling out to a Raspberry Pi device.

IV. VALIDATION: A PROTOTYPE BASED ON OPENTOSCA

In this section we describe the validation of our approach
by a prototypical implementation within the OpenTOSCA
Ecosystem and enabling our approach of motivating scenario
modeled as a TOSCA Topology Template. We extended our
Provisioning Plan Builder Prototype to generate additional
Scale-Out Plans in BPEL 2.0 [13] when a TOSCA CSAR
Archive is received containing a topology marked with at least
one Scale-Out Region. We mapped regions as TOSCA Tags
as in Listing 7. A single tag with the key scalingplans (see
Line 4 in Listing 7) and a comma-separated list of names as
value represents the defined set of regions. These names are the
keys of other tags defined on the Service Template and used
to find the region definitions. We defined a region to scale-
out the device configuration by installing a Python App on a
Raspberry Pi running Raspbian to send sensor data to a Topic
(see Line 5 in Listing 7). Scale-Out Regions are defined by
the tag values defined as a comma-seperated list of Node- and
Relationship Template IDs (see Lines 8-12 in Listing 7). To
define Selection Strategies the region definition also specifies
a list of the strategies with the target Node Template as a refer-
ence (see Lines 13-16 in Listing 7). The prototype itself is an
OSGI-based service integrated into the OpenTOSCA Ecosys-
tem [14] [15] (https://github.com/OpenTOSCA/container). For
the implementation of Provisioning Logic Providers that gen-
erate BPEL 2.0 activities to provision templates we reused
the providers from our previous work. For our motivating
scenario we used providers to start Ubuntu virtual machines
on an OpenStack Cloud, installation of software, such as
Python applications and the Mosquitto Broker, are handled
by a provider that uses Management Operations of a Node
Type exposing a component life-cycle interface (e.g. “install”,
“start”,..), enabling the management of instances. Each of
these operations were either implemented as a SOAP Web
Service deployed on a Apache Tomcat or a shell script, that
are uploaded to a virtual machine or device before hand.

Configuration of the Raspberry Pi was achieved by a service
that can upload files and execute scripts on Debian-based
operating systems, which was also used for virtual machines.

For the Instance Selection Logic Providers we implemented
three prototypical implementations of providers. One provider
is only able to select the next available instance of any kind
of Node Type, this provider implements the “First Instance
Selection Strategy” by accessing the OpenTOSCA API at
runtime and looks for the needed instance data. A second
provider was implemented to handle the “User Provided
Selection Strategy” by adding an additional input parameter
to the plan that expects a reference to an already instanti-
ated Node Template instance. This allows the users of our
scenario to add instances of the needed Node Templates (in
this case Raspberry Pi, Raspbian and Temperature Sensor)
manually and afterwards execute the generate Scale-Out Plan
and reference these instances in the input of the plan. The
last ISLP was implemented for the Workload-based Selection
Strategy by simply checking how many Topics are installed on
an instance of the Mosquitto Node Templates and select the
one with the lowest count. This ISLP is specific for the Node
Type Mosquitto as it must check for Topic Node Template
instances. Our Recursive Selection Activities are implemented
by using the variables holding the instance data at runtime.
These variables are generated in a generic way by the Plan
Builder prototype, as all Node- and Relationship Template
instance data must be available during the execution of a plan.

V. RELATED WORK

In this section we discuss and compare closely related work
on integrating IoT devices into applications.

Carlsson et al. [16] propose a so-called Configuration Ser-
vice that holds pre-defined configurations for different types of
devices. Each device will at startup contact the Configuration
Service to receive its configuration. After receiving its config-
uration it will install and configure the needed components
itself. One of the main differences to our approach is the
predefined configurations for each device type, our approach
enable to model a configuration within TOSCA by reusing
available Node- and Relationship Types, which in turn enables
fast development of configurations. Another main difference is
the missing incorporation of the cloud which is able to deliver
resources that can store and process data sent by IoT devices.

Perera et al. [17] present an Context Aware Sensor Config-
uration Model which eases the selection and configuration of
IoT devices and sensors by using 6 phases. The goal of the
first phase is to find available task description that the user
is interested in by answering questions asked by the system.
The questions are based on the available task descriptions, e.g.,
if there is a task description about measuring temperature in
certain regions, a set of questions that are linked to such a
task is asked from the user to determine whether his overall
goal is related. After selecting a task, the next phases are
used to determine the needed components and sensors based
on their inputs and outputs appropriate for the task. Some
component may be able to produce views for temperature



data and a sensor may be able to produce the needed data.
The following phases are optional and are used to (i) inform
the user with recommendations for sensor deployment and
component acquisition, (ii) discovery of additional context
information and (iii) present cost calculations for the selected
solution. In overall Perera et al. present an approach that
enables guided configuration of IoT applications based on
tasks and user interactions. The presented approach is based on
user interactions to determine the general task to achieve and
according to that determines a set of sensors, their configura-
tion and the binding between gathered data and applications.
Main difference to our approach is the focus on supporting
users to create applications while ours focuses on integrating
IoT components into running applications.

Hirmer et al. [18] introduce a system for automated pro-
visioning, configuration and monitoring of IoT devices. The
system is based on the approach on modeling of so-called
Blueprints of smart environments that specify different devices
with their sensors and actuators within the environment. After
such a Blueprint is modeled it will be registered in the
proposed system and additionally connected to ontologies that
describe devices, sensors and actuators. These ontologies, e.g.,
specify the type, location and usable software adapters to bind
the devices to their system. To provision software adapters
and configure these, the ontologies are used to determine
which adapter from a repository must be used to retrieve and
send data to the system. The actual provisioning is achieved
by reusing TOSCA Topology Templates that encapsulate the
devices with their sensors and actuators, which enables the
automated provisioning and configuration of the software
adapters needed to bind against the system. After the binding
of the devices with the help of adapters their data is send
to their systems Resource Management Platform that is re-
sponsible for enabling IoT applications to receive sensor data
and send commands to actuators. Two of the main differences
to our approach is the dependency of using a middleware
(Resource Management Platform) that abstracts the heteroge-
neous devices, sensors and actuators. Our approach enables to
model applications which use different IoT middlewares and
enables incorporating heterogeneous IoT devices by develop-
ing adapters as TOSCA artifacts. Additionally, our approach is
not bound to the use of ontologies for the selection of devices,
and hence the selection of the right software adapters, as a
Selection Strategy can implement arbitrary selection methods.

VI. CONCLUSION

We presented an approach of integrating IoT devices by
using our method of generating so-called Scale-Out Plans. We
extended TOSCA to enable marking of Scale-Out Regions that
can be annotated with Selection Strategies to control the in-
stance selection at runtime from a modeling perspective. From
these regions we apply our method to automatically generate
Scale-Out Plans, thus, reducing the complexity of installing
and configuring software components on IoT devices.

Future works is the incorporation of additional methods,
such as migration and scale-up techniques, and the investiga-

tion of their applicability to the Internet of Things. Another
research direction is to further automate the integration process
of IoT devices by enabling a guided installation, e. g., by
incorporating Human Tasks [19] into TOSCA Plans.
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